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Abstract：This paper presents a novel perspective on characterizing the spectral 

correspondence between nodes of weighted graphs for image matching applications. 

The algorithm is based on the principal feature components obtained by stochastic 

perturbation of a graph. There are three areas of contributions in this work. First, a 

stochastic normalized Laplacian matrix of a weighted graph is obtained by perturbing 

the matrix of a sensed graph model. Second, we obtain the eigenvectors based on an 

eigen-decomposition approach, where representative elements of each row of this 

matrix can be considered to be feature components of a feature point. Third, correct 

correspondences are determined in a low-dimensional principal feature component 

space between the graphs. In order to further enhance image matching, we also exploit 

the random sample consensus (RANSAC) algorithm, as a post-processing step, to 

eliminate mismatches in feature correspondences. Experiments on synthetic and 

real-world images demonstrate the effectiveness and accuracy of the proposed 

method.  

 

Keywords：graph matching; image matching; stochastic perturbation; principal 

feature component; random sample consensus (RANSAC) 

 

1.  Introduction  

Graphs are commonly used as abstract descriptions in the literature for numerous 

computer vision and pattern recognition problems that can be formulated as graph 
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matching problems [1]. Examples include graph matching [2-5], image segmentation 

[6-7], shape recognition [8-12], and shape segmentation and registration [13]. The 

problem of graph matching can be reduced to finding a mapping between nodes of 

two graphs that preserves most of the similarity relationship between the nodes. Image 

matching can be transformed into a graph matching problem because of the 

representational power of graphs, which use nodes to represent local features 

extracted from the image, and edges to depict relational aspects between features 

[14-15]. Graph matching algorithms in the literature can be broadly divided into 

spectral methods [16-23], relaxation and probabilistic methods [24-29], projection 

clustering methods [30-32], RANSAC-based methods [33-34], diffeomorphic demons 

methods [35-36] and other methods [37-38], according to the optimization criteria 

used. Relaxation and probabilistic methods define probability distributions for the 

relational errors and optimize using discrete relaxation algorithms. Projection 

clustering methods project the vertices of a graph into an eigenspace to find the 

correspondence in that eigenspace. Large rigid motion matching, iteratively based on 

local features, using RANSAC as a post-processing step, is also employed. However, 

these approaches lack global consideration. 

Spectral graph theory is a powerful tool aimed at characterizing the global 

structural properties of graphs using the eigenvalues and eigenvectors of either the 

adjacency matrix or the closely related normalized Laplacian matrix [39]. This theory 

is effective in analyzing geometric distribution of feature points and in solving 

computer vision problems, such as graph matching [40-41]. Among spectral 

approaches, Umeyama [2] proposed a formulation for same size graphs, which derives 

the minimum difference permutation matrix by singular value decomposition 

techniques. Following the ideas from structural chemistry, Scott and Longuet-Higgins 

[3] introduced a Gaussian weighted function to build an inter-image proximity matrix 

between feature points in different images being matched. Then, they performed 

singular value decomposition on the resulting matrix in order to get correspondences 

from the strength matrix; an approach that can accommodate point sets of different 

sizes. However, their method is sensitive to view rotation. To overcome this 
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disadvantage, Shapiro and Brady [4] constructed an intra-image proximity matrix for 

the individual point sets being matched to capture relational image structures. 

However, a sign correction stage is necessary in [4]. Since then, a number of 

enhancements and new ideas have been put forward by researchers. Gold and 

Rangarajan [5] exploited a soft assign update algorithm for graph matching. 

Carcassoni and Hancock [16] embedded the modal structure of point sets into the 

expectation maximization (EM) framework, and improved the accuracy of 

correspondences. Cross and Hancock [25] presented graph matching in the EM 

framework by introducing a dual-step EM algorithm; however, their method cannot 

guarantee the global optimal. Luo and Hancock [26] combined the EM algorithm with 

singular value decomposition to improve the matching. Zass and Shashua [27] 

proposed the hyper-graph matching problem in a probabilistic setting represented by a 

convex optimization. Cho and Lee [29] proposed a progressive method to update 

candidate matches by exploiting a move of graphs via probabilistic voting, which 

greatly boosts the objective function in an integer quadratic programming problem. 

However, its computational complexity is high because exploring the full matching 

space is required [42]. Caelli and Kosibov [31] sought correspondences by searching 

for a match that maximizes the inner product of the truncated and renormalized 

eigenvectors. Learning graph matching is proposed by Caetano et al. [43] to estimate 

a compatibility function, such that the solution of the resulting graph matching 

problem best matches the expected solution. Recently, Ma et al. have published a 

series of papers [44-48] on feature matching based on the assumption that the point 

matches undergo a coherent transformation which can be iteratively estimated by the 

expectation maximization (EM) algorithm [49]. They presented a unified framework 

for non-rigid feature matching based on a reproducing kernel Hilbert space. The 

underlying transformation between the point pairs is represented using a displacement 

field in [44-45], and using a Gaussian mixture model in [46-48]. 

Although the above methods have their own merits, the main limitation is their 

inability to cope with far from isomorphic cases. Also, these approaches may not work 

well in nearly isomorphic cases; implying that they cannot be used when significant 
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levels of structural corruption and noise are present. In addition, sign correction is 

often needed in order to make both sets of axes have consistent directions. These 

methods usually suffer from the combinatorial problem where computing an exact or 

similar match has exponential cost in terms of the number of nodes in the graph. 

Motivated by these problems, we propose a novel graph matching method by 

stochastic perturbation, incorporating RANSAC as a post-processing step, to achieve 

the best possible match in a low dimensional principal feature component graph for 

image registration. We apply the ideas behind matrix perturbation analysis [50], i.e., 

the bigger eigenvalues corresponding to eigenvectors are relatively stable to small 

perturbations, while the smaller eigenvalues are sensitive to small perturbations. First, 

we add a small perturbation on eigenvalues of a normalized Laplacian matrix of the 

sensed graph to get the optimized graph (isomorphic cases). Then, we obtain the 

eigenvectors based on eigen-decomposition, which can be regarded as a modal matrix. 

The modal matrix is orthogonal, and has the eigenvectors as its column vectors. Each 

row of a modal matrix can be considered as a feature vector of a feature, i.e., 

representative elements of each row are the principal feature components of a feature, 

and columns can be considered as modal coordinates of features. Finally, we can 

efficiently find the correct correspondences in a low dimensional principal feature 

component space between the graphs. We can further eliminate part of the feature 

correspondences by incorporating RANSAC [33] as a post-processing step. The 

proposed method can resolve the drawbacks of previous approaches (i.e., not 

performing well in nearly isomorphic cases, sensitivity to the amount of rotation, and 

requiring sign correction) and can reduce the dimensional complexity inherited from 

combinatorial computations. Experimental results show that the proposed method 

outperforms Umeyama’s [2] method, Shapiro and Brady’s method [4], and the method 

of Zass [27]. In this paper, we also extend our previous work [20] on image 

registration to formulate the theoretic model. 

The rest of this paper is organized as follows. Section 2 gives a theoretical 

analysis of the graph matching problem. A novel matching algorithm based on the 

principal feature component of a weighted graph with stochastic perturbation is 
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proposed in Section 3. Section 4 describes the experimental results, and we conclude 

and outline some directions for future research in Section 5.  

2.  Formulation of the graph matching theoretical model  

Given an m l× image I , let N m l= × , and 1 2 3{ , , , , }NV v v v v=   denote the full set 

of pixels in the image I , where iv  denotes the i th pixel of I . Based on the set V , 

we construct a weighted undirected graph ( , , )G V E W  with V as the node set 

and E V V= ×  as the edge set. For simplicity, an edge e E∈  spanning two nodes iv  

and jv , is denoted by ije . ( )ijW w= is a weighted function which gives a real 

non-negative value ( , )i jw v v  to each pair of nodes iv and jv , whose elements are 

weights of edges denoted by ijw , where the weight ijw  on edge ije  is a measure of 

the similarity between nodes iv and jv .  

Definition 1 (Adjacency Matrix): The adjacency matrix of a weighted graph 

( , , )G V E W= is a N N×  matrix GA defined as follows: 

                   
( , )

0
i j

G ij

w v v i j
A a

else
≠

 = =  


                       (1) 

where G  is a weighted undirected graph, GA  is a symmetric matrix, the degree of a 

vertex iv V∈ is defined as 
1

n

i ij
j

d w
=

=∑  and the degree matrix D  is defined as the 

diagonal matrix with degrees 1, , Nd d , i.e., 1 2( , , , )ND diag d d d=  . Let us define 

the Laplacian matrix L  of the graph as follows: 
2

, 1, 2, ,i j
ij G

i

v v i j
L l D A i j N

d i j

− − ≠ = = − = = 
=

        (2) 

where
2

( , )ij i j i jw w v v v v= = − , , 1, 2, ,i j N=  , and 
2

1
i

N

i v i j
j

d d v v
=

= = −∑ , 

1, 2, ,i N=  . 
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The normalized Laplacian matrix is defined as follow: 



1 1 1 1
2 2 2 2( )GL D LD D D A D

− − − −
= = −                      (3) 

The normalized Laplacian matrix L (to simplify the notation L  is written as L  

from this point onward) is positive semi-definite and thus has positive or zero 

eigenvalues, which are desirable properties of the graph Laplacian matrix [40]. By 

exploiting this concept, we establish that the normalized graph Laplacian matrix is 

positive semi-definite and has N  non-negative real-valued eigenvalues 

1 20 Nλ λ λ= ≤ ≤ . 

2.1 Stochastic perturbation analysis 

Graph matching is the process of finding a correspondence between the nodes 

and edges of graphs that satisfies (more or less stringent) constraints ensuring that 

similar substructures in one graph are mapped to similar substructures in the other. 

However, graph matching can be transformed into a problem of Laplacian matrix 

matching. The correspondence between the eigenvectors of a Laplacian matrix is 

defined following Umeyama’s approach [2] using a permutation matrix P . In fact, 

exact isomorphism [51] occurs rarely. Very often the graphs being compared are 

obtained as the result of a description process that is inevitably subject to some form 

of noise. Thus, missing or extra nodes and edges can appear, hampering the 

isomorphism. In this paper, we adjust the structure of a sensed graph by perturbation 

in order to maximize correspondences between the feature points for image matching. 

In order to improve matching performance, we propose using matrix perturbation 

analysis to obtain an approximate optimized weighted graph by an optimal parameter. 

Let GL  and HL  be the normalized Laplacian matrices of two graphs to be matched. 

We consider the normalized Laplacian matrix GL , and the perturbation matrix HHL , 

where HHL  can be obtained from HL  with some stochastic perturbation. The 

perturbation normalized Laplacian matrix HHL  is given by: 

                       *HH HL L Randomω= + ,                       (4) 
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where Random  (random number uniformly distributed in the range of (0,1)) is a 

stochastic matrix, and ω  is a parameter, which can adjust the structure of the sensed 

weighted graph by solving an optimization problem. That is, the perturbation HHL  is 

very similar to GL  (approximate isomorphic case).  

The problem of matching two normalized Laplacian matrices GL  and HL  of 

graphs G  and H  is transformed into the problem of matching GL  and HHL . We 

use the following measure of difference: 

                      
2

( ) min T
G HH FR

J R RL R L= − ,                     (5) 

The approximate optimized normalized Laplacian matrix HHL  can be obtained by an 

optimal parameter ω  based on matrix perturbation analysis (Theorem 1), i.e., the 

problem of isomorphism of GL  and HL  is transformed into an approximate 

isomorphic case of GL  and HHL . 

 
The following theorem extends the theorem in [20]. 

Theorem 1: Let GL  and HL  be N N×  (real) symmetric normalized Laplacian 

matrices with N  non-negative eigenvalues 1 2 Nα α α≥ ≥ ≥  and 1 2 Nβ β β≥ ≥ ≥ , 

respectively, and HH HL L Randomω= + ∗  obtained by perturbing HL , their singular 

value decomposition being given by: 

                            T
G G G GL U U= L ,                          (6) 

                            T
H H H HL V V= L ,                          (7) 

                          T
H H HRandom V V′ ′ ′= L ,                       (8) 

where GU , HV , and HV ′ are orthogonal matrices, 1 2( , , , )G Ndiag α α αL =  , 

1 2( , , , )H Ndiag β β βL =  , 1 2( , , , )H Ndiag g g g′L =  . T
HH HH HH HHL V V= L , where HHV  

is an orthogonal matrix, and 1 1 2 2( , , , )HH N Ndiag β ωg β ωg β ωgL = + + + . 
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Then: 

      
( )( )

2 2

2

1

( ) min ( ) min

( ) min

T T
G H G HHF FP R

N

i i i
i

J P PL P L J R RL R L

J
ω

ω α β ωg
=

= − ⇔ = −

⇔ = − +∑
,        (9)  

where 

T T
HHHH G GR V SU V U= =  is a permutation matrix, and S  is a sign matrix. 

Proof:  Starting with the optimization problem in Eq. (9), we have:  

( )( )

2

2

2

2

2

2

2

2

1

( ) min

( ) min

T
G HH FP

T
G HH FR

T T T
G G G HH HH HH F

T T T
HH G G G HH HH F

T T T T T
HH HH G G G G G HH HH HH F

T
G HH F

G HH F
N

i i i
i

J P PL P L

J R RL R L

RU U R V V

V RU U R V

V V SU U U U S V V

S S

α β ωg
=

= −

⇔ = −

= L − L

= L −L

= L −L

= L −L

= L −L

= − +∑

 

Thus,  

( )( )2 2

1
( ) min ( ) min

N
T

G HH i i iR i
J R RL R L J

ω
ω α β ωg

=

= − ⇔ = − +∑ .      (10) 

The optimal parameter ω  is obtained by minimizing ( )J ω  to zero, and then the 

approximate optimized weighted graph (normalized Laplacian matrix) HHL  is 

obtained by Eq. (4).                                                   ■ 

2.2 Analysis of principal feature component on a weighted graph  

We perform singular value decomposition of GL  and HHL , i.e., T
G G G GL U U= L , 

T
HH HH HH HHL V V= L . The modal matrices GU  and HHV  are orthogonal, and each row 

of GU  and HHV  can be considered to be feature vectors 
GUF and

HHVF , respectively. 

We extract some elements (the first few, more specifically 3, biggest eigenvalues 

corresponding to column eigenvectors are used as explained below) from each row of 
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GU  and HHV , which are regarded as principal feature components of a weighted 

graph. This way, we construct a matching matrix ( )ij N N
Z

×
based on modal matrices 

GU  and HHV , i.e., 

( ) ( )2

ij ir jrN N N N
Z F F

× ×
= −                     (11) 

where r  is the principal feature component of a weighted graph, irF  and jrF  are 

i th  principal feature component of GU  and j th principal feature component of 

HHV , respectively.  

A “few” non-repeated eigenvalues in descending order are selected 

corresponding to the column eigenvectors used. In the current implementation, we 

tested a range of principal feature component values r  of a weighted graph, and 

found that the best results can be achieved when 3r = . Thus, 3 biggest values are 

selected. Automatically choosing the principal feature components of feature points is 

another challenging problem in image matching that we will address in future work. 

The advantages of exploiting principal feature components include: First, to 

characterize the structure of the original data and discard the less important 

components reducing the size of the data structure. Second, a sign correction stage is 

not needed, which eliminates the maximum consistency of the features of GU  and 

HHV  as much as possible.  

 

3.  Matching algorithm based on principal feature component of 

weighted graph with stochastic perturbation 

Based on the model formulation given in the previous section, we detail the steps 

of our matching algorithm as follows:  

1. Given two point sets, construct the normalized Laplacian matrices GL  and HL  of 

point sets G  and H  respectively, following Eq. (3).  
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2. Compute perturbation matrix HHL  by stochastic perturbation of HL following Eq. 

(4).  

3. Perform singular value decomposition of GL , HL , and Random  (defined in 

Section 2.1) respectively, to get the orthogonal matrices GU , HV , and HV ′  of point 

sets G  and H . 

4. Use Eq. (10) to seek an optimal parameterω , namely minimize Eq. (10) to zero, to 

obtain the optimized perturbation matrix HHL . 

5. Perform singular value decomposition of GL and HHL , i.e., T
G G G GL U U= L , and 

T
HH HH HH HHL V V= L . 

6. Compute the distance between a reference principal feature component of graph G  

and a sensed principal feature component of graph H  by 

( ) ( )2

ij ir jrN N N N
Z F F

× ×
= − based on Eq. (11), where ijZ reflects the similarity 

between these two sets of features. Best matches are given based on the elements of 

ijZ  being both the smallest in its row and the smallest in its column; we then 

regard the two different features iG  and jH  as having a 1:1 correspondence with 

one another.  

7. The RANSAC post-processing step can be incorporated in order to further enhance 

feature correspondence in image matching.  

8. Both affine and projective transform can be used. Since affine transform is more 

commonly used in applications, we apply affine transform for illustration and 

compute the transform parameters by matching relationships, and align the 

reference image and sensed image based on the transform parameters.  

 

4.  Experimental results and performance evaluations  

In this section, we first show the results of our novel image matching technique 

based on principal feature components of weighted stochastic perturbation, and then 
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provide both qualitative and quantitative evaluations to verify the effectiveness of our 

technique compared to other methods. We commence with synthetic images and 

real-world environments, to demonstrate the robustness under view changes, 

including temporal changes, and the presence of outliers. In the second part, we 

evaluate the proposed method with image sequences and real-world images, to 

demonstrate that our method outperforms other alternatives, including the condition of 

illumination variations, remote sensing images and different medical image modalities. 

In the current implementation, we tested a range of principal feature component 

values r  of a weighted graph, and found that the best results can be achieved when 

3r = . Thus, three non-repeated eigenvalues in descending order are selected 

corresponding to the column eigenvectors used. We will investigate how to obtain an 

optimal r value in future work. All the experiments have been done on a personal 

computer using MATLAB R2010a, with Intel(R) Core (TM) CPU 2.53GHz and 

4.00GB RAM. 

4.1  Robustness under view changes and outliers 

Synthetic images 

   

(a) Reference image     (b) Sensed image            (c) Matching result 

Fig. 1:  Matching results of the horse images: (a) reference image, (b) sensed image, and (c) 
matching result from our method.  

Fig. 1 shows experiments using synthetic horse images to test the ability of our 

algorithm under translations, with (a) the reference image, and (b) the sensed image 

from a different viewpoint (translated). Twenty-two target feature points are defined 

in the horse model, including one ear tip, for correspondence matching. Feature points 

are extracted by the Harris Corner Detector [52] in both the reference and sensed 

images, based on points of maximum curvature along the contour of the horse. 

The matching results show that our method is accurate except for one feature 
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point, which matches on the wrong ear as shown in Fig. 1 (c) (red color line). Further 

investigation shows that the mismatch is due to the similar curvature of the horse ears, 

causing the Harris Corner Detector to detect a different ear as the feature in the sensed 

image. 

Outliers 

     
(a)                                  (b) 

Fig. 2:  Validating our method by adding outliers: (a) is the registration result with 8 outliers 
discriminated in blue, and (b) has 18 outliers discriminated in blue. The original 27 features 
points are marked in both red and blue. Our method is able to register the feature points back 
to their original coordinates accurately. 

  
(a)                     (b) 

 
                                       (c) 
Fig. 3:  Matching result for the Oxford corridor sequence. (a) Reference image (Frame 1), (b) 
sensed image (Frame 5), (c) matching result. 
 

To test performance on outliers, we used a synthetic point set containing 27 
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feature points (reference image). In the first experiment, 8 outliers were added to the 

feature points, giving a total of 35, which were then transformed using an affine 

transform to generate the sensed image. Our method was applied to find the correct 

transformation parameters and we were able to map the feature points back to their 

original coordinates discriminating the eight outliers. Fig. 2 (a) is the registration 

result. The zoom-in view clearly shows the 27 features points in both red and blue, 

and the 8 outliers in blue.  

In the second experiment, 18 outliers were added, giving a total of 45 points in 

the transformed sensed image. Our method was able to find the correct transform 

parameters and map the feature points back to their original coordinates as shown in 

Fig. 2 (b). This shows that our method is robust in the presence of outliers. 

  
(a) August 8, 1995          (b) June 7, 1994 

  
                       (c)                                  (d) 
Fig. 4:  Matching and registration results for urban region remote sensing images. (a) Reference 
SPOT band 3 image acquired on Aug. 8, 1995. (b) Sensed TM band 4 image acquired on Jun. 7, 
1994. (c) Our matching and (d) registration result. 

Registration results on a pair of images from multi-view capture, and remote 

sensing images 

We test the application of our method in a multi-view computer vision problem 

 13 



using two images (Frame 1 and Frame 5) from the Oxford corridor sequence [53] as 

shown in Fig. 3. Twenty-one landmark feature points are manually identified on these 

two images as in [43] exploiting the points marked manually to test graph matching 

performance instead of using the Harris detector.   

For applications in remote sensing image registration, fifteen feature points are 

manually identified on the two aerial images ( 512 512×  images of Brasilia, Brazil), 

which were taken at different times using different sensors. Fig. 4 (a) and (b) are 

urban region SPOT band 3 and TM band 4 obtained on August 8, 1995 and June 7, 

1994, respectively. Fig. 4 (c) shows the matching result and (d) shows the registration 

result generated by our method.  

We change the structure of the sensed weighted graph by stochastic perturbation, 

in order to avoid one-to-many correspondences or mismatching. As a result, we are 

able to accurately find one-to-one correspondences between nodes of two weighted 

graphs. 
 
4.2  Comparisons and performance evaluations 

Image Sequences 

Fig. 5 shows comparisons of matching under rotation (about 20 degree) and 

illumination variations on two frames (the 15th and 45th frame) of the CMU/VASC 111 

frame long toy house sequence, and on two frames (the 730_cth and the 730_i110th 

frame) of object 730 (Amsterdam Library of Object Images), respectively. Matching 

results using the proposed method are compared with Umeyama’s [2] method, 

Shapiro and Brady’s method [4], and the method of Zass [27].  

In these experiments, thirty feature points (the 15th and 45th frames in the left 

column of Fig. 5) and forty points (the 730_cth and the 730_i110th frames in the right 

column of Fig. 5) are selected using the Harris Corner Detector in the reference and 

sensed images.  

Our method is accurate under rotation and illumination variations and is able to 

find feature correspondences more accurately than the methods of Umeyama, Shapiro 

and Brady, and Zass. Table 1 summarizes the performance of our method compared to 
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these other methods.  

  

Umeyama’s method           (a)                           (b) 

  
Shapiro and Brady’s method   (c)                           (d) 

  

Zass’ method                (e)                            (f) 

  
Our method                  (g)                           (h)   

  
Our method after incorporating the RANSAC step 
                      (i)                                   (j) 

Fig. 5:  Matching results under rotation and illumination variations. Top row: Umeyama’s 

method; second row: Shapiro and Brady’s method; third row: Zass’ method; fourth row: our 

method; bottom row: our method after incorporating the RANSAC step. 
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Our method performs even better when combined with the RANSAC post-processing 

step, which eliminates mismatches further. For example, Fig. 5 (i) and (j) eliminate 

nine and twenty features correspondences in Fig. 5 (g) and (h), respectively, after 

incorporating the RANSAC step. 

Fig. 6 compares the performance of using the algorithms of Umeyama, Shapiro 

and Brady, Zass, and our method. Feature correspondences in Fig. 6 (a) and (b) reflect 

the correspondences in the left and right columns of Fig. 5, respectively. We can see 

that our method outperforms the other methods, which is achieved by exploiting the 

principal feature component to perturb the weighted graph, making our method more 

robust and have higher accuracy than the other three methods. 

  
(a)                                    (b) 

Fig. 6:  Performance comparison of feature correspondences under rotation and illumination 

variations. Feature correspondence using Umeyama’s method, Shapiro and Brady’s method, 

the method of Zass, and our method for (a) the left columns and (b) the right columns of Fig. 

5 respectively.    

TABLE 1: Summary of Experimental Results for the House Image Sequences and 

Amsterdam Library of Object Images 

# of feature and % matched 15th-45th frame 730_cth-730_i110th frame 
Umeyama 27 (90.00%) 35 (87.50%) 
Shapiro 27 (90.00%) 36 (90.00%) 

Zass 28 (93.33%) 39 (97.50%) 
Our method 29 (96.67%) 40 (100.0%) 

Our method with RANSAC step 21 (100.0%) 20 (100.0%) 

In order to verify the robustness of the proposed method by increasing the 

number of outliers under big rotation changes (about 45 degrees) on the 5th and 76th 
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frames of the CMU/VASC 111 frame house sequence, comparisons of matching 

results under the different outliers compared to Zass’ method are shown in Fig. 7. 

Here the x-axis denotes the number of outliers and the y-axis is the accuracy of 

matching. We use Zass’ method because it outperforms the other two methods on 

real-image experiments. From the experimental results, the matching performance of 

both Zass’ method and the proposed method decreases with larger number of outliers. 

However, the proposed method is relatively stable, and can find more candidate points 

which are correct and good for matching. Also, the accuracy of the proposed method 

is higher and declines more slowly, and the accuracy is still higher than Zass’ method, 

which indicates that the proposed method is robust to outliers. This is because the 

principal feature components obtained by perturbation can discriminate outliers, 

which can be regarded as point features used to improve the robustness. 
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Fig. 7:  Comparisons of matching results under different number of outliers. 

 

In order to verify the robustness of the proposed method under different 

perturbation levels, we added Gaussain noise with mean 0 and different standard 

deviations σ  using the Matlab function (σ .*randn) to the CMU/VASC 111 frame 

long toy house sequence. We give nine experiments using image pairs from (the 0th 

and 10th frame), (the 0th and 20th frame) to (the 0th and 90th frame) with feature points 

automatically detected. Each experiment was repeated 12 times with different 

standard deviations σ , and fifteen feature points were detected from the 0th frame. 

Table 2 shows the performance under different Gaussain noise levels. Our method is 

relatively stable under different perturbation levels, and can find correct 
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correspondences. These experiments also reveal an interesting relationship, i.e., 

higher standard deviations correspond to lower perturbation values maintaining good 

correspondence accuracy. This illustrates why the performance of our method is high. 

However, when the feature points cannot be detected well because of bigger view 

changes to house images, matching performance decreases, e.g., between 0th and 50th 

frame. Fig. 8 shows the matching performance under different noise levels for the 

different house image frames. In Fig. 8, the y-axis is the accuracy of matching and the 

x-axis denotes the house frames. We can see that the proposed method is robust to 

high noise levels. 

TABLE 2: Matching Performance under Different Noise Levels for the Different House 

Image Frames  

house 
Different standard deviationsσ , perturbation parameters ( e-004)  

and correspondences (%) 
1 2 3 4 5 6 7 8 9 10 11 12 

(0th,10th) 
3.1497 

100 

1.5219 

100 

1.0728 

100 

0.8386 

100 

0.6928 

100 

0.5315 

100 

0.4343 

100 

0.3894 

100 

0.3625 

100 

0.3298 

100 

0.2969 

100 

0.2704 

100 

(0th,20th) 
9.8091 

100 

5.1160 

100 

3.5747 

100 

2.2099 

100 

1.8773 

100 

1.6565 

100 

1.4510 

100 

1.1739 

100 

1.2211 

100 

1.0663 

100 

0.9598 

100 

0.8554 

100 

(0th,30th) 
21.000 

100 

9.2909 

100 

7.0821 

100 

4.4676 

100 

4.1752 

100 

3.4922 

100 

2.8707 

100 

2.0369 

100 

1.7827 

100 

1.8822 

100 

1.7080 

100 

1.6391 

100 

(0th,40th) 
4.1809 

100 

2.1224 

100 

1.5904 

100 

1.1351 

100 

0.7929 

100 

0.7258 

100 

0.6670 

100 

0.5322 

100 

0.4844 

100 

0.3943 

100 

0.3632 

100 

0.3162 

100 

(0th,50th) 
1.2381 

100 

0.6894 

100 

0.4588 

100 

0.3410 

100 

0.2538 

100 

0.2158 

100 

0.1903 

100 

0.1796 

100 

0.1580 

100 

0.1466 

100 

0.1141 

100 

0.1048 

100 

(0th,60th) 
10.000 

93.33 

5.3614 

93.33 

3.5979 

93.33 

3.1014 

93.33 

2.2604 

93.33 

1.8559 

93.33 

1.6111 

93.33 

1.2928 

93.33 

1.2196 

93.33 

1.0801 

93.33 

0.9036 

93.33 

0.7980 

93.33 

(0th,70th) 
8.8562 

86.67 

4.8005 

86.67 

3.1477 

86.67 

2.3814 

86.67 

1.9077 

86.67 

1.3989 

86.67 

1.3903 

86.67 

1.0891 

86.67 

0.9771 

86.67 

0.8454 

86.67 

0.7397 

86.67 

0.6377 

86.67 

(0th,80th) 
13.000 

86.67 

7.1354 

86.67 

4.5669 

86.67 

3.5240 

86.67 

2.8220 

86.67 

2.3694 

86.67 

1.9617 

86.67 

1.5833 

86.67 

1.4436 

86.67 

1.2808 

86.67 

1.2176 

86.67 

1.1851 

86.67 

(0th,90th) 
10.000 

46.67 

5.1308 

46.67 

3.3860 

46.67 

2.3839 

46.67 

2.2974 

46.67 

1.9216 

46.67 

1.4604 

46.67 

1.3914 

46.67 

1.0608 

46.67 

0.9697 

46.67 

0.9523 

46.67 

0.8948 

46.67 
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Fig. 8:  Plot of accuracy for various noise levels for the different house image frames. 

 

Remote sensing images

Fig. 9 is another example of remote sensing images. We compare our matching 

results with the other three methods. Two 405 350×  images with high temporal 

changes were used in our experiments. They were both taken from the same area of a 

trailer park at different times. Forty feature points are extracted by the Harris Corner 

Detector [52]. Observe that our method outperforms the three alternatives as shown in 

Fig. 9, and the result of Shapiro and Brady’s method is better than that of Umeyama, 

which demonstrates that a purely structural approach (Umeyama’s method) is not 

robust and unstable for finding correspondences. Shapiro and Brady’s method needs 

to use a sign correction step, which can adversely affect the matching results if the 

correction is not done accurately. Also, note that Zass’ method is better than 

Umeyama, and Shapiro and Brady by using an iterative successive projection and 

probabilistic approach. The reason for the success of our method is that we change the 

structure of the sensed weighted graph by stochastic perturbation in order to improve 

the structural stability. We exploit the principal feature component space and find the 

correct one-to-one correspondences between nodes of two weighted graphs in the 

principal feature component space, which avoids the sign correction step. Furthermore, 

we can eliminate outliers by incorporating the RANSAC step.  

Comparing the matching results in Fig. 9 (a), (c), (e) and (g), it can be observed 

that the proposed method can find the correct one-to-one correspondences between 
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nodes of two weighted graphs. The other three methods have features mismatches, 

which produce incorrect transformation parameters (dark segments in the registration 

results shown in Fig. 9 (b), (d) and (f)). Before using the RANSAC step, the proposed 

method is better than the others for feature point matching as shown in Fig. 9 (g) and 

(h). The RANSAC step is used to achieve more robust image registration by 

eliminating more mismatches.  

  
Umeyama’s method: darker segments are caused by inaccurate transformation 

             (a) Matching result                      (b) Registration 

  

Shapiro and Brady’s method: darker segments are caused by inaccurate transformation 

        (c) Matching result                      (d) Registration 

  
Zass’ method: darker segments are caused by inaccurate transformation 

(e) Matching result                      (f) Registration 
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Our method: correct registration is by accurate transformation 

(g) Our matching result                     (h) Registration  

  
(i) Our matching after incorporating the RANSAC step  

Fig. 9:  Comparison of matching and registration results using images with high structural 

changes: (a) and (b) are matching and registration result using Umeyama’s method; (c) and (d) 

are matching and registration result using Shapiro and Brady’s method; (e) and (f) are 

matching and registration result using Zass’ method; (g) and (h) are matching and registration 

result using our method; (i) matching result after incorporating the RANSAC step. 

Test on other types of images 

  
(a) ACC method                         (b) VFC method  

  
(c) ACC method                         (d) VFC method 

Fig. 10:  Comparison of matching results using two types of images: (a) and (c) matching 

results using ACC method; (b) and (d) matching results using VFC method. 
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We further compared the proposed method with recent point matching methods 

including agglomerative correspondence clustering (ACC) method [32], vector field 

consensus (VFC) method [45] and other feature-based matching methods, such as the 

SIFT method [54] and the SURF method [55], to test the effectiveness of the proposed 

method.  

  

(a) SIFT method                           (b) SURF method  

 

(c) ACC method  

  
(d) VFC method                          (e) Our method  

Fig. 11:  Matching results for the 0th and 2nd frame of the Boat image sequence under zoom and 

rotation: (a) SIFT method, (b) SURF method, (c) ACC method, (d) VFC method, (e) Our method.  

 

Before verifying the matching performance of the proposed method, we first test 

the matching performance according to different images of ACC method and VFC 

method as shown in Fig. 10. Fig. 10 (a) and (c) show the matching results based on 

ACC method, from which Fig. 10 (a) achieves a one-to-one correspondence. However, 

there are many mismatches, such as the top left corner and lower right corner, as 

shown in Fig. 10 (c). On the other hand, Fig. 10 (b) and (d) produce different 

matching results based on VFC method, which produces some mismatches and 

achieves a one-to-one correspondence, respectively. From these experimental results, 
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we know that the ACC and VFC method have their own merits for different types of 

images. 

  

(a) SIFT method                           (b) SURF method  

 

(c) ACC method 

  

(d) VFC method                           (e) Our method                                     

Fig. 12: Matching results for 2nd and 4th frame of the Graffiti image sequence under viewpoint: (a) 

SIFT method, (b) SURF method, (c) ACC method, (d) VFC method, (e) Our method. 

 

To demonstrate the validity of the proposed method, we apply it to public image 

datasets obtained from [56] which are used to test the robustness to large scale and 

viewpoint changes by using the Harris-Laplace detector [57]; because, the Harris 

detector is vulnerable to scale. The experiments are conducted on two image 

sequences comparing the proposed method with SIFT method, SURF method, ACC 

method and VFC method to show the proposed method is robust to large scale and 

viewpoint changes. The comparisons of matching results for two image sequences are 

shown in Fig. 11 and Fig. 12. It is can be seen that all the methods achieve better 

correspondence for the Boat image sequence except for the SURF method as shown in 

Fig. 11, but the computation time is completely different as listed in Table 3. For the 

Graffiti image sequence, the SIFT method (distRatio=0.52 (default)), SURF method 
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(Options.tresh=0.0001(default)) and ACC method produce some mismatches as 

shown in Fig. 12 (a), Fig. 12 (b) and Fig. 12 (c). In contrast, the proposed method and 

VFC method also produce better matching results. But the proposed method uses the 

least time for matching compared to the other methods, which further indicates that 

the proposed method is advantageous considering both accuracy and computation 

time. 
 

TABLE 3: Comparison of Computation Time and Correct Correspondences Rate for the 
Different Methods.  

Figures, time (seconds) 
and correct 

correspondences rate 
(%) 

Methods 

SIFT SURF ACC VFC Our method 

Fig. 11 
seconds 33.5122 8.6635 3.9902 4.7228 3.1185 

% 22(100.0%) 2(22.22%) 22(100.0%) 36(100.0%) 13(100.0%) 

Fig. 12 
seconds 11.5766 18.1376 4.2221 4.3289 2.6213 

% 25(92.59%) 9(50.00%) 14(73.68%) 30(100.0%) 12(100.0%) 

 

  
(a) Harris                             (b) Harris-Laplace  

 
(c) BRISK 

Fig. 13: Matching performance for 1st and 2nd frame of the Graffiti image sequence with different 

feature detector operators: (a) Harris, (b) Harris-Laplace, (c) BRISK. 

In order to further test the effectiveness of the proposed method, we combine it 

with other feature detector operators, such as Harris-Laplace [57] and BRISK [58], to 

public image datasets to verify that the proposed method can also achieve good 

correspondence. Fig 13 shows the matching results based on the proposed method 
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with Harris operator, Harris-Laplace operator and BRISK operator, which indicates 

that the proposed method can produce better matching results. Some feature points 

extracted are not very accurate by the Harris detector operator as shown in Fig. 13 (a), 

but the proposed method can still achieve good matching. In contrast, the 

Harris-Laplace and BRISK can detect more accurate feature points for much better 

correspondence, and the performance of Harris-Laplace and BRISK is better than 

Harris. The BRISK detects some features points which are very close each other, 

which can produce two-to-one correspondences, but the correspondence is also very 

accurate. Table 4 gives the accuracy and computation time for the proposed method 

after combining other feature detector operators, which indicates that the proposed 

method can achieve better correspondence.  

  

TABLE 4: Comparison of Accuracy and Computation Time for the Different Detector 

Operators. 

Accuracy and Time  
The proposed method combining different detector operators 

Harris Harris-Laplace BRISK 
Accuracy (%) 95.92(%) 100.00(%) 96.36(%) 

Time (s) 2.7028 2.9385 2.6086 

 

5.  Conclusion and future work  

We presented a novel feature matching method based on principal feature 

components by stochastic perturbation of a weighted graph, which is computationally 

efficient. The proposed method obtained the eigenvectors by perturbing the matrix of 

a sensed weighted graph model. This matrix can be regarded as a modal matrix, with 

some elements of each row of the modal matrix being feature components of feature 

points based on eigen-decomposition. Our method can capture accurate 

correspondences in different types of images and is robust under translation, rotation 

and scaling, as well as in the presence of outliers and under illumination variations. 

Experimental results on different types of images are very encouraging and 
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demonstrate that the proposed method outperforms other algorithms in both accuracy 

and computational time. In future work we will investigate how to compute the 

optimal principal feature component values of a weighted graph. Automatically 

choosing the representative feature points is another challenging problem in image 

registration that we plan to address. 
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